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Abstraet A comprehensive sNdy of the magnetic pmperries of nonheracting single-domain 
panicles with cubic magnetocrystalline anisotropy h presented. k numerical calwlations 
extend the m-temperature predictions of Joffe and Heuberger and enable the e tkn of 
thermally activaled magnetizalion revenal on the hysteresis loop at finite temperahlm to be 
determined. Variations in particle s i u  distribution are also considered. Calculations indicale a 
reduction in the intrinsic coercivity as the mean particle diameter is reduced and an i n m e  in 
coercivity for small particle diameter systems as the standard deviation of the size distribution 
is increased. 

1. Introduction 

The first systematic calculations of hysteresis loop behaviour were performed on uniaxial 
fine-particle sysiems at zero temperature by Stoner and Wohlfarth in 1948 [I]. Subsequently, 
Gaunt [2] and Joffe [3] extended these studies by including the effects of non-zero 
temperatures on magnetization reversal. 

Materials with multiaxial cubic anisotropy have also been the subject of hysteresis 
loop predictions, most notably by Joffe and Heuberger in 1974 [4]. Joffe and Heuberger 
predicted hysteresis loops for a system of identical non-interacting particles having cubic 
magnetocrystalline anisotropy with K > 0 (three easy axes along the cube edges) and K < 0 
(four easy axes along the body diagonals). The Joffe and Heuberger treatment, however, 
does not account for thermal agitation, and irreversible behaviour would only occur in their 
model when the energy barrier vanishes due to the application of a sufficiently large applied 
field. 

More recently Geshev and co-workers [5,6] have reported theoretical predictions of the 
thermomagnetic properties and remanence cuwes of particle systems with cubic symmetry. 
These predictions introduce the effects of temperature through an implicit variation of the 
reduced field h = I,H/21KI by adopting temperature-dependent variations in the saturation 
moment Is and anisotropy constant K .  

The concept of thermally activated magnetization reversal in fine-particle systems is 
well known [71. These effects are more usually examined via calculations of the relaxation 
time for the phenomenon which is usually considered to follow an ArrheniwN&l-type 
law [SI: 

5-’ = foexp(-AE/kT). (1) 
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A knowledge of the measurement time then enables the contribution of thermal activation 
to be assessed. 

The effects of a distribution of particle sizes should also be taken into account to mirror 
the situation generally observed in real systems. Chantrell and co-workers [9] have reported 
the effects of a particle size distribution on the coercivity of uniaxial systems also taking 
into account the effects of thermal agitation. 

In a subsequent paper, Chantrell and co-workers [IO] have also shown that, for a system 
with easy axes aligned parallel to the applied field and a given particle size distribution at 
an appropriate temperature, three distinct types of behaviour can be observed in reverse 
fields following saturation. 

For the smallest particles thermal fluctuations will enable spontaneous magnetization 
reversal or su+rparamagnetism [ 111 to occur, which can generally be described by the 
Langevin function. 

For larger particles which are not superparamagnetic, magnetization reversal can occur 
due to a combination of thermal and field-induced effects. These particles are then blocked 
in the reverse field direction. The largest particles have their moments blocked in their 
original direction until a sufficiently large reverse field is applied. 

The net magnetization is then the sum of the three integrals over differing parts of the 
size distribution. These magnetization components are shown schematically in figure 1. 

In this paper we develop a model of a system of particles with cubic anisotropy at a 
finite temperature using the concept of the critical diameter. 

2. The computer model 

2.1. Basic m d e l  of Joffe and Heuberger 

Adopting the coordinate system defined by Joffe and Heuberger [4] and illustrated in figure 2, 
the orientation of the axes of any particle relative to the applied field -If may be expressed 
in terms of the angles (-9, @). The orientation of the magnetization vector of a particular 
particle may be similarly described, relative to the principal anisotropy axes, in m s  of the 
angles ( y ,  0) .  The total reduced free energy of such a particle containing a single domain 

REGION 2 REGION 3 

0.2 

YP(O) Y p ( K  y=Dp/Dv 
Figure I .  Schematic representation of the three distincl regions of magnetization reversal in a 
slze-distribuled panicle system. This lognormal distribution also shows ule typical positions 
for yP (0) and Y, (h). 
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3 

1 

Figure 2. Definition of onenational angles relative to principal directions of the cube. 

and exhibiting cubic magnetocrystalline anisotropy, neglecting demagnetization and surface 
effects, can be then written as 

where h is the reduced field (= HIJ21KI). Is the saturation magnetization, E the total 
energy, V the particle volume, K the first-order anisotropy constant, ai, cu2. a 3  are the 
direction cosines and cos @ is given by 

cos@ = cosy cos0 + sin y sine cos(19 - $). (3) 

a1 =sinycosff azzsinysinff a3=cosy. (4) 

The direction cosines are given by 

Therefore the dimensionless energy equation may be expressed as follows: 

q(y, 8) = -[sin*y - sin4y(l - sinZ26)] + h[cosycos6 + sin y sinOcos(8 - *)I. K 
21KI 

(5) 
The set of values ( y ,  8) that minimize the energy equation (5) represent the equilibrium 

orientations of the magnetization vector at that field and particle orientation value. It is 
possible to analytically determine the easy directions in zero applied field by setting h equal 
to zero and solving the partial differential equations for q ,  with respect to y and 8, when set 
to zero. Further, calculation of the second derivatives will enable the nature of the solutions 
to be investigated and determine whether they are minima, maxima or saddle points. 

When K > 0 there are six minima along the cube edges denoted by the axes 1, 2 and 
3 and the corresponding reverse directions along these axes. Putting this in terms of Miller 
indices the equivalent directions would be [loo], [OlO], [OOI], [iOO], [OiOl and [OOil. In 
zero applied field the six angle configurations that give the desired energy minima are 

x 
Ymin = 0 Ymin = y&=Z 
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for each of 

Similarly, the maxima are at eight orientations of the type ( I  11) along the body diagonals 
given by 

ym = C0S-'(3-'Iz) ymax = 77 - COS-*(3- 112 ) 

for each of 
IT 3rr 5% In - -  5'4' 4 '  4 '  

6, = 

The saddle points are at twelve orientations of the type ( 1  10) along the face diagonals 
given by 

I IT 3n 
4 2 2 mi= - I9$d = 0. -* x ,  - 

When K e 0 the maxima and minima values obtained for K z 0 are interchanged. 
Thus there are eight easy directions of the type (1  11) and six maxima of the type (100). 

In the presence of an applied field however, the energy function (5) is much more 
difficult to minimize. Assume the sample is saturated in a large negative field For h -= 2 
only one position of ( y ,  19) is stable and located in the first octanL If h is reduced from this 
value to zero, the magnetization vector remains in the position of lowest energy. When a 
reverse field is applied, this energy minimum is raised, the equilibrium becomes metastable 
and, with increasing reverse field, unstable. The magnetization will swing out of the first 
octant, and it is here that a systematic approach must be introduced to determine the path 
leading to the relevant local minimum. The computer model employed two procedures to 
determine the orientations ymin and emin which give a m e  minimum energy. A steepest 
descent method is initially performed to give values of y and 8 close to the true minimum 
values, followed by a Newton-Raphson method, for functions of two variables, to rapidly 
converge to an accurate minimum. 

The basic computational procedure is as follows. 
(1) The anisotropy constant, K, is set. 
(2) The reduced applied field h, is started from h = -10 and is incremented in 

small steps to +I  and then to - I  to complete the full hysteresis loop. The size of 
field step varied, depending on the relative position of the hysteresis loop. Smaller field 
steps, hincrcmcnt = 0.03, were made during critical switching regions of the hysteresis loop 
compared to the more stable magnetic regions where switching was not likely to occur when 

(3) The particle orientation angles (e,@) are both incremented from 0 to z/2 in 
increments of x/90 at each value of the applied field. 

(4) The steepest descent procedure is performed for each particle orientation at each field 
value. At the first field value of h = -10, for all particle orientations, the magnetization 
vector is approximately parallel to the applied field. Therefore, the starting values for this 
procedure are at h = -10 are y = 0 and 9 = +. The steepest descent procedure is 
terminated at the point where the gradient becomes zero. 

hincment = 0.05. 
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(5)  The Newton-Raphson method is started using the values of ( y ,  9 )  output from the 
steepest descent procedure. At each orientation of (0, $) the values of (y .  19) are stored 
and used to initialize the steepest descent procedure for the same orientation (0. $) in the 
next value of the field. 

Therefore, completing steps 1-5 for all values of the applied magnetic field will enable 
a full set of the minimum values of the magnetization vector angles, ymln and I9,,,t,h. to be 
determined for all the possible orientations of particle easy axis, (0, $), and for all h. 

2.2. The introdurtion of temperature 

The process of magnetization reversal of single-domain particles in the absence of 
thermal agitation involves the application of an external applied field sufficiently large to 
overcome the energy barrier to reversal of the magnetization vector from one stable energy 
configuration to another. With the introduction of temperature the magnetization reversal 
process is activated by thermal energy. In particular, if the thermal energy is of sufficient 
magnitude an irreversible transition over the energy barrier may be thermally activated. The 
criterion for such a reversal is given by 

Tmd 2 AV (6) 
where A q  is the magnitude of the reduced energy barriex and T d  is the reduced 
temperature [21 given by 

where fa is of the order of the Larmor precession frequency, taken to equal IO9 s-’ [8,1 I]. 
Assuming a measurement time o f t  = 100s  results in 

25kT 
21KIV’ 

TE,j = - 
For particles with cubic anisotropy the lowest point in their energy barrier occurs at the 

saddle point: 

Atl= ~ ( y ~ a d d ~ c ,  b r a d  - V(Ymini %in). (9) 
Thus if the inequality (6) is satisfied, the magnetization vector will overcome the energy 
barrier and move to a new local minimum. 

In zero applied field, for K z 0, the reduced energy barrier is equal to 0.125 for 
all values of (0, $), exactly one quarter of the magnitude of the energy barriers for the 
uniaxial particles [I]. Similarly, for K c 0 in zero applied field, the energy barrier is equal 
to 0.04166 for all values of (0, $), a factor twelve smaller than the equivalent uniaxial 
particle configuration. Thus 

(10) 

A E = 2 K V A q = -  for K c O .  (11) 

K V  
A E = Z K V A q = -  for K r O  

4 
K V  
12 

Therefore, the reduced temperature at which superparamagnetism manifests itself, for K z 0 
and K c 0, will be Td = 0.125 and T d  = 0.04166, respectively. 

For the single-particle size case, additional steps are needed in the basic computational 
procedure to account for thermal effects. Since thermal transitions over the energy barriers 
will not take place until the reversing field has changed direction (i.e. when h < 0 for the 
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first quadrant of the loop and when h 2 0 on the third quadrant of the loop), the following 
additional steps in the algorithm need only be performed on those portions. 

(4a) (ymale, ~ 9 ~ ~ u , ~ )  are determined for all (6 ,  @) in the relevant portions of the hysteresis 
loop, starting at h = 0. It was found that only the Newton-Raphson procedure was required 
to accurately determine the saddle points. Using the sets of values of (ymin,&) and 
(yd,jle, t J d d ~ ~ )  the energy barriers are calculated at each value of (h, 6.11). 

(6) If T, z AV, then the particle has made the transition into the reversing field 
direction. We then return to step 4 and redetermine (y,in. emin). 

2.3. The inclusion of a particle size distribution 

In real systems, the size of the particles varies over a certain range and has to be considered 
as a random variable of some statistical distribution. A particle within the distribution can 
be considered as either superparamagnetic or blocked, depending on the particle diameter. 

Fine magnetic particle assemblies are frequently observed to possess a log-normal 
particle size dismbution [9]. The most convenient form of a distribution is one of volume 
fraction f (y), defined in terms of the reduced diameter y = D/Dv. where 0, is the median 
diameter of the system. Thus f(y)dy is the fraction of the total volume of the particles 
having reduced diameters between y and y + dy. 

The distribution shown in figure 1 indicates the three critical regions associated with a 
distributed system of magnetic fine particles. The particles in region 1 with y < yp(0) are 
superparamagnetic. Given that for thermal relaxation A E  4 25kT [ I l l  and that in zero 
field A E  = KV/4 where K > 0, the critical diameter for superparamagnetic behaviour, 
Dp(0), is given by 

(12) 

By rearranging (10) we may obtain an expression for AV in terms of the critical 
superparamagnetic volume in zero field, Vp(0) and in applied field h, Vp(h), where 

Vp(0) =- A E  
AV = 

2KVp(h) 8Vp(h)’ 

This expression may then be re-written in terms of the critical reduced diameter in 
applied field h, yp(h) = Dp(h)/D, , and the critical reduced diameter in zero field, 
yp(0) = Dp(0)/Dv where 0, is the median particle diameter: 

where the field dependence is included via AV given by (5 )  and (9). 
Assuming the particles are initially in a large negative field, the tendency is for the 

magnetization vector to lie parallel to the field direction and the relevant orientation ( y ,  b), 
minimizing the energy q and being located in the first octant. As h becomes increasingly 
positive it is possible for some of the magnetization vectors to make an irreversible transition 
over the energy barrier. 

However, the largest particles in the third region of figure 1 where y > y, (h), continue 
to be blocked. due to their size, and cannot make the transition over their respective 
energy barriers. Only the smaller blocked particles, in region 2 of the distribution where 
yp (0) < y c yp (h), can ovenome the anisotropy energy barriers and their magnetization 
vectors can rotate into the direction of the positive field. 
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Thus, by calculating yp (0) and y, (h) it is possible to determine the fraction of the 
assembly that consists of superparamagnetic particles, blocked particles that have made the 
transition into the reversing field direction and blocked particles that remain in the saturating 
field direction. 

3. Predictions of the single-particle volume model 

3.1. Hysteresis at T = 0 

Hysteresis loops at OK were evaluated using the computational methods outlined in section 2 
by minimizing the values of ymin and Omin for all (8, @). Assuming a random orientational 
distribution of crystalline axes, the number of particles per unit volume of the assembly 
having 0 in the interval (8,0 +de) and @ in the interval (@, @ + d@) will be 

(1% 

where n is the number of particles per unit volume of the assembly. In (15). the angles 0 
and @ can take all values in the closed interval [O,x/2], since all other orientations have 
symmetrical equivalents within this range. The reduced magnetization of an assembly of 
spherical single-domain particles with random orientated easy axes is then given by 

2 n .  dn (0, @) = y sin edOd@ 

- I  2 5  I = - = -- J 1% [cosy cos0 + sin y sin0 cos (@ - 8)] sinOd6'dS. 
1s  0 

Using (16), hysteresis loops were then computed for anisotropy constant values K z 0 or 
K < 0, the results of which are illustrated in figure 3. When K is positive the reduced 
coercivity (h, = H J H K ,  where HK is the anisotropy field) is 0.321, much larger than 
when K is negative (h, = 0.189). Similarly, the saturation remanence is slightly smaller 
for K == 0 (& = 0.831) than for K -= 0 (rr = 0.866). The shape and magnitude of both 
of these hysteresis loops is independent of particle diameter, since T = 0. These results 
agree exactly with those of Joffe and Heuberger [41 at OK, and implies that both models 
are operating correctly. 

-1 -0.5 0 0.5 1 
Reduced field. h. 

Fgurel The hysteresis loopsat T =OK forasystem with K > 0 and K c 0. 
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I I I I I  
- I  -0.5 0 0,6 L 

Reduced Field, h 

Figure 4. Hysteresis Imps for a system of identical multiaxial particles as a function of reduced 
temwrature. K z 0. 

3.2. Hysteresis at T # 0 

At OK, the first particle to make an irreversible rotation over the energy barrier is the 
particle with orientation (6 = 0". @ = 45") in a reverse field of h = 0.274. As the reduced 
temperature, T,, is increased the magnitude of the critical field, ho. (i.e. the field at which 
the first particle reverses its magnetization vector), decreases. Specifically, for T d  = 0.05 
the particle orientated at (6' = 0", @ = 45") makes an irreversible bansition at a lower 
reverse field of h = 0.116. Following this calculation for the other particles and again 
integrating enables the magnetization at any field to be obtained. 

The calculated hysteresis loops for K > 0 are illustrated in figure 4 at various vdues of 
the reduced temperature Ted. As Tmd is increased, the reduced coercivity decreases from its 
maximum value of 0.321 as more particles traverse the energy barrier in lower applied fields 
due to thermal agitation. The case for K < 0 will be the subject of a future publication. 

The relationship between the reduced cmcivity, h,, and the reduced temperature, Tmdr 
is shown in figure 5. As the reduced temperature increases the coercivity decreases f" 
its maximum value at OK and becomes m u  when Td = 0.125. This reduced temperature 
value (T, = 0.125) corresponds to the temperature at which the multiaxial system becomes 
superparamagnetic (i.e. f, and h, are both equal to zero). For single-sized particle systems 
the saturation remanence is invariant with reduced temperature (for T ,  c 0.125) and only 
goes to zero at the superparamagnetic critical diameter. The form of this data corresponds 
well with the previous calculations of Joffe [3] for systems of identical isolated particles 
with uniaxial anisotropy. In that instance, however, the maximum reduced coercivity, in 
OK, was 0.479 and the introduction of superparamagnetic behaviour and zero coercivity 
occurred at Td = 0.5. 

4. Predictions for a system with a particle size distribution 

4.1. Hysferesis 

The magnetization of a system of particles with a distribution of particle sizes may be 
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

Tred 

Figurr 5. Effect of Td on h. for a system of i d e n r i d  multiaxial panicles. 

considered to consist of contributions due to those particles that are superparamagnetic and 
the larger particles that are blocked. 

The reduced magnetization (= I / I s )  of the superparamagnetic particles fl corresponding 
to region 1 of figure I is given by 

where L(a) is the Langevin function and f(y) is the log-normal distribution of particle 
volume fraction represented by 

where y(= DID,) is the reduced particle diameter and 0, the median particle diameter. 
The standard deviation of the distribution is represented by U .  

The reduced magnetization of the blocked particles that have made the transition into 
the positive field direction (region 2 of figure 1) is given by 

- 2 f . f  
I ~ = - -  j 1 [ w s y c o s e + s i n ~ s i n e c o s ( +  - t 9 ) 1 ~ ~ ~ s i n ~ d ~ d +  (19) 

I o  

where 

The reduced magnetization of the blocked particles that remain in the negative field direction 
6 (region 3 of figure 1) is given by 

2 f .  i, =-- = o  j ~' [cosycosB+sinys in~cos(+  -t9)]Pb2sinOdf3d$ (21) 

where 
roo 



2788 M Walker et ai 

Therefore, the magnetization due to blocked particles at a value of field, h, is given by 

i4 = i2 + i,. (23) 

HK. However, if H > HK the equation 
describing the magnetization of a fine particle system where all the blocked particles have 
been rotated into the field direction, is 

Equation (19) is only applicable for H 

where 
,m 

Thus, the total reduced magnetization of a system of independent cubic anisotropic 
particles with randomly oriented easy axes, assuming a log-normal particle size distribution. 
is given by the summation of the superparamagnetic particle contribution (Ti) and the 
blocked particle contribution (f4): 

(26) 

where the method of calculating i, is dependent on the magnitude of H relative to HK. If 
H < HK then r4 is calculated from (19) and (21) in (U), otherwise, when H > HK, is 
calculated from (24). 

Following the inclusion of the above equations to our model, and adopting the method of 
Abramovitz and Stegun [I21 to determine the distribution function integrals, the following 
hysteresis loops were numerically predicted. 

Figure 6 shows the predicted hysteresis loops €or the equivalent to a system of fine 
cobalt ferrite particles at a temperature of T = lOOK and various median particle diameters 
(MPD): the standard deviation of the particle size distribution was kept constant at U = 0.3. 
An anisotropy constant of K = +2 x 106ergcc-l and buk saturation magnetization 
of Is = ltooemucc-' has been assumed. The superparamagnetic contributions to these 
hysteresis loops are illustrated in the associated figure 7. 

i = i, + i4 

-1 -0.5 0 0.5 I 

Reduced Field, h 
Figure 6. Hysteresis loops at IOOK for various values of median panicle diameter where 
a=O.3, K = 2 x  106ergcc-'and I,=rlDOemucc-'. 
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- 
l=l/ls 

- 3  -0.5 0 0.5 * 
Reduced Field, h 

Fwre 7. Superparamagnetic mntributions to hysteresis loops at IM) K as a function of median 
panicle diameter where 0 = 0.3. K = 2 x 1O6ergcc-' and I ,  = .UX)emucc-'. 

Examination of the hysteresis loop for the smallest median diameter of 90A at 
lOOK indicates a substantial contribution to the magnetization from the superparamagnetic 
particles, and hence the maximum remanence observed at T = OK is not achieved at this 
temperature. For many applications of fine magnetic particles it is desirable to maintain a 
high remanence. One way of achieving this is by increasing the median diameter of the 
system. This effect is clearly shown in the hysteresis loops of figure 6, predicted with the 
same U and median diameters up to 2lOA. As expected the remanence is substantially 
increased from 0.210 for the 90A system through to 0.811 for the 2lOA system. This 
latter value of remanence is close to the maximum remanence of 0.831 previously attained 
for the single-particle volume system when the superparamagnetic contribution was absent 
from the calculation. This increase in the remanence is a result of the dramatic decrease in 
the superparamagnetic contribution indicated in figure 7. 

In addition to the changes in remanence characteristics there is also an associated 
increase in the coercivity of the particles as the median diameter increases, due to the 
reduced significance of the thermal energy relative to the anisotropy energy. Thus, the 
coercivity increases with increasing median panicle diameter, as shown in figure 6. 

As previously indicated for the larger particle systems in figure 6, the coercivity will 
also increase as the temperature is lowered, since an increase in D, causes a corresponding 
increase in the energy barrier ( K V / 4 )  defined in (10). Thus by increasing the particle 
volume, or by lowering the temperature, the superparamagnetic magnetization contribution 
may become insignificant, compared to the total magnetization, signifying that the majority 
of particles are blocked for such configurations. 

4.2. The variation of coercivity and remanence with temperature 

The effects of temperature on the saturation remanence and coercivity of a fine-particle 
ensemble with cubic anisotropy has been investigated both in terms of the absolute 
temperature and through an examination of the temperaturerelated ratio Dp/Dv derived 
from (12). 

The temperature-dependent variation of saturation remanence and coercivity for a system 
of particles with D, = IWA, K = 2 x 106ergcc-' and I ,  = 400emucc-' are shown in 
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hc , 

. . . . . . . . . . . .  

. . . . . . . . . . .  

0 150 300 450 

Tempera tu re  (Kelvin) 

Fwre8. Theeffecloftemprat"hc forasystem withcubicanisotropy, whereDV = IMlh. 
K = 2 x IOb ergcc-'. n = 0.3 and I, = WJemuoc-'. Ins& the effect of Dp/Dv on k, lor a 
system with cubic anisotropy. 

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  

0 150 300 450 600 
Tempera tu re  (Kelvin) 

Figure9. Theeffecfofhmpelatureoni, lorasystemwithcubicaniso~py. where 0, =jmd. 
K = 2 x IOnergcc-'. n = 0.3 and Is = 400emucC'. Inset the effect of DpID, on lr lor a 
system with cubic anisouopy. 

figures 8 and 9 respectively. The value of the standard deviation was kept constant at 
U = 0.3. 

The same data are expressed relative to the more general parameter Dp/Dv  in the insets 
in figures 8 and 9. The insert in figure 8 indicates that as (D,/D,)  increases the probability 
of thermally activated magnetization reversal increases, so the reduced coercivity, hc. 
decreases. Beyond Dp/ Dv = 2 the energy barriers are sufficiently reduced for magnetization 
changes to occur in very low reverse fields. Note that there is irreversible behaviour for 
median diameters significantly smaller than Dp as the most important consequence of the 
particle size distribution. 

Similarly, the insen in figure 9 indicates that, for very small values of Dp/Dv,  the 
fraction of superparamagnetic particles in the assembly is negligible and the optimum value 
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of remanence is achieved. The maximum value of 6 = 0.831 begins to decrease beyond 
Dp/Dv  = 0.4 as the superparamagnetic contribution to the magnetization increases. 

4 3 .  The variation of remanence and coercivity with o 

Figures 10 and 11 illustrate the variations of the remanence and reduced coercivity as a 
function of the standard deviation of the particle size distribution at 200K. It has been 
assumed that a saturating field has been applied to the system of particles at each value of 

For the particle systems with largest median diameter, as U approaches zero (when all 
the particles are of equal diameter) the maximum remanence and coercivity are achieved 
as the majority of particles are blocked (i.e. h, = 0.321, f, = 0.831). This is not the 
case, however, for the particle assemblies with a small median diameter of the order 
of D, = IWA. in this configuration the particles are predominantly superparamagnetic 
(y < y, (0)) and consequently both the remanence and coercivity tend towards zero as U 

becomes smaller. 

U .  

0 0.1 11.2 0.3 0.4 0.5 0.6 0.7 0.8 

0- 
Figure 10. Variation of h, against standard deviation of the panicle size distribution a. 

5. Conclusions 

In this paper we have comprehensively extended the original work of Joffe and Heuberger [4] 
on the hysteresis properties of assemblies of non-interacting singledomain particles with 
multiaxial anisotropy at OK. We have extended the theoretical treatment of such hysteresis 
loop calculations by considering the consequences of thermally activated magnetization 
reversal and by adopting a log-normal particle size distribution of particle diameters. This 
produces a model that is capable of realistic comparison with experimental data In 
this paper we have shown the effects of mean particle diameter, standard deviation and 
temperature on the superparamagnetic and blocked components of the hysteresis loop and 
their consequences for the reduced coercivity and remanence. 

The significance of the model is in its capability for direct comparison with experimental 
data. Such a detailed comparison might be expected to reveal information on particle 
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Figure 11. W o n  of i, against standard deviation of the panicle size distribution U. 

interaction effects and incoherent reversal mechanisms, which may contribute to the 
behaviour of practical fine particle systems. In this respect two phenomena are important 
the time dependence of the magnetization (which may provide information on magnetization 
reversal mechanisms) and the behaviour of the remanent magnetization (sensitive to 
interaction effects). These questions are addressed in the following paper. 
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